k2SSL: A Faster and Better Framework for Self-Supervised Speech Representation Learning

Yifan Yang*, Jianheng Zhuo*, Zengrui Jin, Ziyang Ma, Xiaoyu Yang, Zengwei Yao, Liyong Guo, Wei Kang, Fangjun Kuang, Long Lin, Daniel Povey, Xie Chen

Next-gen Kaldi Team & X-LANCE Lab

July 2, 2025

The Challenge in Speech-based SSL

- Speech-based SSL models offer generalization ability and can derive universal representations from unlabeled data.
- However, they are incredibly resource-intensive, demanding enormous computational resources.
 - Pre-training HuBERT Base requires 32 GPUs; HuBERT Large needs 128 GPUs, and HuBERT X-Large needs 256 GPUs.
 - ► WavLM Base needs 32 GPUs, while WavLM Large needs 64 GPUs.
- This high cost in time and memory makes cutting-edge SSL inaccessible for most researchers.
- Furthermore, existing open-source frameworks struggle with excessive memory demands and inefficient data management when handling today's massive datasets, which range up to millions of hours.

Goal

There is a clear need for improving the accessibility, efficiency, and effectiveness of speech-based SSL systems.

Our Solution: The k2SSL Framework

We introduce **k2SSL**, an open-source framework designed to be faster, more memory-efficient, and higher-performing for speech SSL. Our solution is built on two key aspects:

1. Optimized Architecture

- Memory-lean HuBERT-style Architecture
- Memory-efficient Pre-training Loss
- Effective Fine-tuning Loss
- Advanced Zipformer Backbone & ScaledAdam Optimizer

2. Scalable Framework

- Seamless Scalability of Management and Training
- Constant and Fast Start-up Time
- FP16 Stability
- Compatibility with Fairseq Checkpoints

< □ > < □ > < □ > < □ > < □ > < □ >

k2SSL Overview

The flagship model of the k2SSL framework is **Zipformer**. To ensure fair comparisons against HuBERT and WavLM, our experiments use identical parameters, data, targets, and decoding methods.

Results: Superior Efficiency and Performance with Zipformer Base (95M)

Models pre-trained on LibriSpeech-960h, fine-tuned on LibriSpeech-100h using BPE-level pruned RNN-T loss (top) / letter-level CTC loss (bottom)

Model	Word Error Rate (%)↓				GPU	Pre-train
	dev-clean	dev-other	test-clean	test-other	Hours \downarrow	Speedup
HuBERT Base (fairseq)	4.88	12.06	4.98	11.65	1878	1x
Zipformer Base (k2SSL)	3.67	7.86	3.80	7.87	531	3.53x
Relative WER Reduction	-24.8%	-34.8%	-23.7%	-32.4%		

Madal	LM	Word Error Rate (%) \downarrow				
would		dev-clean	dev-other	test-clean	test-other	
wav2vec 2.0 Base	None	6.1	13.5	6.1	13.3	
HuBERT Base	None	5.3	13.0	5.4	12.6	
WavLM Base	None	-	-	5.7	12.0	
Zipformer Base	None	4.7	9.6	4.4	9.8	
wav2vec 2.0 Base	4-gram	2.7	7.9	3.4	8.0	
HuBERT Base	4-gram	2.7	7.8	3.4	8.1	
WavLM Base	4-gram	-	-	3.4	7.7	
Zipformer Base	4-gram	2.6	6.4	3.0	6.8	
				< • • • • • • • • •	◆ 豊き ◆ 豊き	

Results: Efficient Scaling with Zipformer Large (306M)

Models pre-trained on 60kh of Libri-Light, fine-tuned on LibriSpeech-960h using BPE-level transducer / pruned RNN-T loss.

Model	Unlabeled Data	Pre-train Steps	Word Error Rate (%) test-clean test-other	
Supervised				
Transformer Transducer	-			5.6
Conformer-L Transducer	-	-	2.1	4.3
Conformer-L Pruned Transducer	-	-	2.5	5.6
Zipformer-L Pruned Transducer	-	-	2.1	4.6
Pre-trained				
Conformer-L	LL-60k	400k	2.0	4.5
HuBERT Large	LL-60k	400k	1.8	3.9
Zipformer Large	LL-60k	250k	1.8	4.0

Key Takeaway

Zipformer Large achieves performance comparable to HuBERT Large while requiring only **5/8 of the pre-training steps**. This highlights the remarkable efficiency and scalability.

A D N A B N A B N A B N

э

Follow-up Work: VietASR

Zipformer (68M), FBank frontend, on **50h labeled**, 70kh unlabeled spontaneous Vietnamese speech.

System	# Params (M)	Giga- Speech 2	Common Voice	FLEURS	Avg
Whisper large-v3	1542	17.94	13.74	8.59	16.44
Whisper base	72	39.88	44.07	40.41	40.16
MMS L1107	964	46.62	43.88	55.35	47.67
GigaSpeech 2	68	14.72	18.81	13.50	14.75
GigaSpeech 2	152	12.83	14.43	11.59	12.74
Google USM	-	13.28	12.46	11.75	13.03
Azure Speech CLI 1.37.9	-	<u>11.86</u>	10.21	11.88	<u>11.78</u>
Zipformer (from scratch)	68	19.7	27.02	23.18	20.54
VietASR Iteration 1	68	9.60	14.75	12.74	10.28
VietASR Iteration 2	68	8.01	12.21	11.40	8.68
VietASR Iteration 3	68	7.68	11.46	10.96	8.31

Key Takeaway

Through iterative semi-supervised training, 68M Zipformer outperforms Whisper Large-v3 and commercial ASR APIs. VietASR extends the k2SSL framework, demonstrating its practical solution to in-the-wild data.

Conclusion

- We introduced **k2SSL**, a scalable framework for more efficient and effective self-supervised speech representation learning.
- k2SSL drastically reduces memory usage and training time. Our Zipformer-based systems significantly outperform HuBERT and WavLM, demonstrating a 3.5x pre-training speedup and substantial WER reductions up to 35%.
- k2SSL makes high-performance SSL more accessible to the broader research community. VietASR further provides a cost-effective and practical solution to in-the-wild data.

Open Source

The codes, configurations, logs, and pre-trained checkpoints are publicly available to facilitate further research:

https://github.com/k2-fsa/icefall

Thank You

If you have any questions, feel free to contact me.

Email: yifanyeung@sjtu.edu.cn

扫一扫上面的二维码图案,加我为朋友。

イロト イポト イヨト イヨト

э