GigaSpeech 2: An Evolving, Large-Scale and Multi-domain ASR Corpus for Low-Resource Languages with Automated Crawling, Transcription and Refinement

Yifan Yang¹, Zheshu Song¹, Jianheng Zhuo¹ Mingyu Cui⁴, Jinpeng Li³, Bo Yang², Yexing Du^{2,6}, Ziyang Ma¹, Xunying Liu⁴, Ziyuan Wang⁷, Ke Li⁸, Shuai Fan⁹, Kai Yu^{1,9} Wei-Qiang Zhang^{3,11}, Guoguo Chen^{10,11}, Xie Chen^{1,5,11}

 $^1\rm X\text{-}LANCE$ Lab, SJTU $^2\rm PCL$ $^3\rm THU$ $^4\rm CUHK$ $^5\rm SII$ $^6\rm HIT$ $^7\rm Birch$ Al $^8\rm Dataocean$ Al $^9\rm AlSpeech$ Ltd $^{10}\rm Seasalt$ Al Inc $^{11}\rm SpeechColab$

June 26, 2025

Scaling is Shown Promising in Speech

Leverage large-scale data matters

- ASR: MMS, USM, Whisper, Canary, Parakeet, Dolphin
- TTS: BaseTTS, Llasa, MaskGCT, F5-TTS

Leverage in-the-wild data matters

- Abundant & Readily Collectable
- Gap: Research vs. Industry

Methods

- Semi-Supervised Learning: Pseudo-Labeling (PL), Iterative Pseudo-Labeling (IPL), Noisy Student Training (NST)
- Self-Supervised Learning: HuBERT, WavLM, data2vec, data2vec 2.0, BEST-RQ

Scaling is Rarely Done for Low-Resource Languages

Southeast Asia languages: Thai (th), Indonesian (id), Vietnamese (vi)

Dataset	Language	# Hours (h)	Domain	Speech Type	Labeled	Label Type	
	th	172.0					
Common Voice	id	28.0	Open domain	Read	Yes	Manual	
	vi	6.0					
	th	13.3					
FLEURS	id	12.6	Wikipedia	Read	Yes	Manual	
	vi	13.3					
	th	61.0					
VoxLingua107	id	40.0	YouTube	Spontaneous	No	-	
	vi	64.0					
	th	15.6			Yes		
CMU Wilderness	id	70.9	Religion	Read		Manual	
	vi	9.2					
BABEL	vi	87.1	Conversation	Spontaneous	Yes	Manual	
VietMed	vi	16.0	Medical	Spontaneous	Yes	Manual	
Thai Dialect Corpus	th	840.0	Open domain	Read	Yes	Manual	
TITML-IDN	id	14.5	News	Read	Yes	Manual	
MEDISCO	id	10.0	Medical	Read	Yes	Manual	
	th	497.1					
YODAS manual	id	1420.1	YouTube	Spontaneous	Yes	Manual	
	vi	779.9					
	th	1.9					
YODAS automatic	id	8463.6	YouTube	Spontaneous	Yes	Pseudo	
	vi	9203.1					
	th	12901.8					
GigaSpeech 2 raw	id	8112.9	YouTube	Spontaneous	Yes	Pseudo	
	vi	7324.0					
	th	10262.0					
GigaSpeech 2 refined	id	5714.0	YouTube	Spontaneous	Yes	Pseudo	
	vi	6039.0					

A Retrospective of ASR Datasets

New Paradigm for Constructing Large-Scale ASR Datasets

- In-the-wild data oriented
- Audio-only, free of scarce paired data
- Automated pipeline

GigaSpeech 2: Key Contributions

Large-scale, Multi-domain, and Multilingual Spontaneous ASR Corpus

- GigaSpeech 2 raw: 30kh, covering Thai, Indonesian, and Vietnamese.
- GigaSpeech 2 refined: Thai (10kh), Indonesian (6kh), and Vietnamese (6kh).

Automated ASR Corpus Construction Pipeline

Audio-only, without reliance on labeled data.

Modified NST Method to Refine Flawed Pseudo Labels Iteratively

Challenging and Realistic Manual Evaluation Sets

Covers spontaneous speech across multiple topics and content formats.

Strong Empirical Validation of GigaSpeech 2

- Multiple test sets: GigaSpeech 2, Common Voice, and FLEURS
- Outperforms Whisper Large-v3 and commercial APIs (Azure, Google)

Dataset Construction: GigaSpeech 2 raw (1/3)

Audio Collection

- Select YouTube channels
- Multiple topics: Agriculture, Art, Business, Climate, Culture, Economics, Education, Entertainment, Health, History, Literature, Music, Politics, Relationships, Shopping, Society, Sport, Technology, Travel
- Various content formats: Audiobook, Commentary, Lecture, Monologue, Movie, News, Talk, Vlog

Creating TRAIN/DEV/TEST Splits

- Ensuring no speaker overlap between the splits.
- DEV and TEST sets each contain 10 hours, manually transcribed by professionals.

Dataset Construction: GigaSpeech 2 raw (2/3)

Transcription with Whisper

- Whisper Large-v3 model
- Language detection: 30-second segment from the middle

Forced Alignment with MMS

- Whisper can generate timestamps, but not precise enough.
- CTC alignment model from MMS: robust to noise, GPU efficient, effective for long sequences.

Text Normalization

- Normalization Form Compatibility Composition (NFKC)
- Uppercase all characters
- Remove punctuation
- Map Arabic numerals to corresponding words

Dataset Construction: GigaSpeech 2 raw (3/3)

Multi-dimensional Filtering

- **Charset Filtering:** Keep segments with characters only from the target language permitted charset.
- Language Confidence Filtering: Use fastText LID model to filter by confidence score.
- Audio Duration Filtering: Filter segments based on min/max duration thresholds.
- Balancing: Control the duplication of transcripts caused by channel-specific content.

Dataset Construction: GigaSpeech 2 refined (1/10)


```
Algorithm 1: Iterative Label Refinement
Input: Pseudo-label set P, Number of iterations n, Threshold \tau
Output: Refined-label set R.
Divide P into n splits P_1, P_2, \dots, P_n:
\mathcal{R} \leftarrow \mathcal{P}_1;
Train teacher model M_1 on R, with noise:
for i \leftarrow 1 to n do
     R \leftarrow \alpha
     if i == 1 then
         // Filter P_i by teacher model M_i with CER \leq \tau
         \mathcal{R} \leftarrow \{(x, y) \in \mathcal{P}_i \mid CER(y, \mathcal{M}_i(x)) \leq \tau\};
         for i \leftarrow 1 to i do
              // Relabel P_i by teacher model M_i and filter with CER < \tau
               \mathcal{R}_{tmp} \leftarrow \{(x, \mathcal{M}_i(x)) \mid (x, y) \in \mathcal{P}_j, CER(y, \mathcal{M}_i(x)) \leq \tau\};
               \mathcal{R} \leftarrow \mathcal{R} \cup \mathcal{R}_{tmn}:
         end
    Train equal-or-larger student model M_{i+1} on R with noise and assign as new teacher;
end
return R;
```

Dataset Construction: GigaSpeech 2 refined (2/10)


```
Algorithm 1: Iterative Label Refinement
Input: Pseudo-label set P, Number of iterations n, Threshold \tau
Output: Refined-label set R.
Divide P into n splits P_1, P_2, \dots, P_n:
Train teacher model M_1 on R with noise;
for i \leftarrow 1 to n do
     R \leftarrow \alpha
     if i == 1 then
         // Filter P_i by teacher model M_i with CER \leq \tau
         \mathcal{R} \leftarrow \{(x, y) \in \mathcal{P}_i \mid CER(y, \mathcal{M}_i(x)) \le \tau\};
         for i \leftarrow 1 to i do
              // Relabel \mathcal{P}_i by teacher model \mathcal{M}_i and filter with CER \leq \tau
              \mathcal{R}_{tmp} \leftarrow \{(x, \mathcal{M}_i(x)) \mid (x, y) \in \mathcal{P}_j, CER(y, \mathcal{M}_i(x)) \leq \tau\};
              \mathcal{R} \leftarrow \mathcal{R} \cup \mathcal{R}_{tmp};
         end
    Train equal-or-larger student model M_{i+1} on R with noise and assign as new teacher;
end
return R;
```

Dataset Construction: GigaSpeech 2 refined (3/10)


```
Algorithm 1: Iterative Label Refinement
Input: Pseudo-label set P, Number of iterations n, Threshold \tau
Output: Refined-label set R.
Divide P into n splits P_1, P_2, \dots, P_n:
Train teacher model M1 on R with noise:
for i \leftarrow 1 to n do
     R \leftarrow \alpha
     if i == 1 then
         // Filter P_i by teacher model M_i with CER \leq \tau
         \mathcal{R} \leftarrow \{(x, y) \in \mathcal{P}_i \mid CER(y, \mathcal{M}_i(x)) \le \tau\};
         for i \leftarrow 1 to i do
              // Relabel \mathcal{P}_i by teacher model \mathcal{M}_i and filter with CER \leq \tau
              \mathcal{R}_{tmp} \leftarrow \{(x, \mathcal{M}_i(x)) \mid (x, y) \in \mathcal{P}_j, CER(y, \mathcal{M}_i(x)) \leq \tau\};
              \mathcal{R} \leftarrow \mathcal{R} \cup \mathcal{R}_{tmp};
         end
    Train equal-or-larger student model M_{i+1} on R with noise and assign as new teacher;
end
return R;
```

Dataset Construction: GigaSpeech 2 refined (4/10)


```
Algorithm 1: Iterative Label Refinement
Input: Pseudo-label set P, Number of iterations n, Threshold \tau
Output: Refined-label set R
Divide P into n splits P_1, P_2, \dots, P_n:
Train teacher model M_1 on R with noise:
for i \leftarrow 1 to n do
     R \leftarrow \alpha
     if i == 1 then
         // Filter P_i by teacher model M_i with CER \leq \tau
         \mathcal{R} \leftarrow \{(x, y) \in \mathcal{P}_i \mid CER(y, \mathcal{M}_i(x)) \le \tau\};
         for i \leftarrow 1 to i do
              // Relabel \mathcal{P}_i by teacher model \mathcal{M}_i and filter with CER \leq \tau
              \mathcal{R}_{tmp} \leftarrow \{(x, \mathcal{M}_i(x)) \mid (x, y) \in \mathcal{P}_j, CER(y, \mathcal{M}_i(x)) \leq \tau\};
              \mathcal{R} \leftarrow \mathcal{R} \cup \mathcal{R}_{tmp};
         end
    Train equal-or-larger student model M_{i+1} on R with noise and assign as new teacher;
end
return R;
```

Dataset Construction: GigaSpeech 2 refined (5/10)


```
Algorithm 1: Iterative Label Refinement
Input: Pseudo-label set P, Number of iterations n, Threshold \tau
Output: Refined-label set R
Divide P into n splits P_1, P_2, \dots, P_n:
Train teacher model M_1 on R with noise;
for i \leftarrow 1 to n do
     R \leftarrow \alpha
     if i == 1 then
         // Filter P_i by teacher model M_i with CER \leq \tau
         \mathcal{R} \leftarrow \{(x, y) \in \mathcal{P}_i \mid CER(y, \mathcal{M}_i(x)) \leq \tau\};
         for i \leftarrow 1 to i do
              // Relabel P_i by teacher model \mathcal{M}_i and filter with CER \leq \tau
              \mathcal{R}_{tmp} \leftarrow \{(x, \mathcal{M}_i(x)) \mid (x, y) \in \mathcal{P}_j, CER(y, \mathcal{M}_i(x)) \leq \tau\};
              \mathcal{R} \leftarrow \mathcal{R} \cup \mathcal{R}_{tmp};
         end
    Train equal-or-larger student model M_{i+1} on R with noise and assign as new teacher;
end
return R;
```

Dataset Construction: GigaSpeech 2 refined (6/10)


```
Algorithm 1: Iterative Label Refinement
Input: Pseudo-label set P, Number of iterations n, Threshold \tau
Output: Refined-label set R.
Divide P into n splits P_1, P_2, \dots, P_n:
Train teacher model M_1 on R, with noise:
for i \leftarrow 1 to n do
     R \leftarrow \alpha
     if i == 1 then
         // Filter P_i by teacher model M_i with CER \leq \tau
         \mathcal{R} \leftarrow \{(x, y) \in \mathcal{P}_i \mid CER(y, \mathcal{M}_i(x)) \le \tau\};
         for i \leftarrow 1 to i do
              // Relabel P_i by teacher model \mathcal{M}_i and filter with CER \leq \tau
              \mathcal{R}_{tmp} \leftarrow \{(x, \mathcal{M}_i(x)) \mid (x, y) \in \mathcal{P}_j, CER(y, \mathcal{M}_i(x)) \leq \tau\};
              \mathcal{R} \leftarrow \mathcal{R} \cup \mathcal{R}_{tmp};
         end
     end
    Train equal-or-larger student model M_{i+1} on R with noise and assign as new teacher;
end
return R;
```

Dataset Construction: GigaSpeech 2 refined (7/10)

Dataset Construction: GigaSpeech 2 refined (8/10)


```
Algorithm 1: Iterative Label Refinement
Input: Pseudo-label set P, Number of iterations n, Threshold \tau
Output: Refined-label set R.
Divide P into n splits P_1, P_2, \dots, P_n:
Train teacher model M_1 on R, with noise:
for i \leftarrow 1 to n do
     R \leftarrow \alpha
     if i == 1 then
         // Filter P_i by teacher model M_i with CER \leq \tau
         \mathcal{R} \leftarrow \{(x, y) \in \mathcal{P}_i \mid CER(y, \mathcal{M}_i(x)) \le \tau\};
         for i \leftarrow 1 to i do
              // Relabel P_i by teacher model \mathcal{M}_i and filter with CER \leq \tau
              \mathcal{R}_{tmp} \leftarrow \{(x, \mathcal{M}_i(x)) \mid (x, y) \in \mathcal{P}_j, CER(y, \mathcal{M}_i(x)) \leq \tau\};
              \mathcal{R} \leftarrow \mathcal{R} \cup \mathcal{R}_{tmn}:
         end
     end
    Train equal-or-larger student model M_{i+1} on R with noise and assign as new teacher;
return R;
```

Dataset Construction: GigaSpeech 2 refined (9/10)


```
Algorithm 1: Iterative Label Refinement
Input: Pseudo-label set P, Number of iterations n, Threshold \tau
Output: Refined-label set R
Divide P into n splits P_1, P_2, \dots, P_n:
Train teacher model M_1 on R with noise;
for i \leftarrow 1 to n do
     R \leftarrow \alpha
     if i == 1 then
         // Filter P_i by teacher model M_i with CER \leq \tau
         \mathcal{R} \leftarrow \{(x, y) \in \mathcal{P}_i \mid CER(y, \mathcal{M}_i(x)) \le \tau\};
         for i \leftarrow 1 to i do
              // Relabel P_i by teacher model M_i and filter with CER < \tau
              \mathcal{R}_{tmp} \leftarrow \{(x, \mathcal{M}_i(x)) \mid (x, y) \in \mathcal{P}_j, CER(y, \mathcal{M}_i(x)) \leq \tau\};
              \mathcal{R} \leftarrow \mathcal{R} \cup \mathcal{R}_{tmp};
         end
    Train equal-or-larger student model M_{i+1} on R with noise and assign as new teacher;
end
return R;
```

Dataset Construction: GigaSpeech 2 refined (10/10)

ASR Model Training on GigaSpeech 2

Our modified NST is effective

 Consistent improvements in the WER performance on four evaluation sets until the final iteration.

Thai achieves the lowest CER

• WER relative reductions of 13.92%, 17.48%, 53.27%, and 26.45% respectively (Thai, Iteration 4 vs. Iteration 1).

NST	//11	// NA I	. "5	CER / WER			
		#vocab	#Params	GigaS	peech 2	Common Voice	FLEURS
Iter	(h)		(M)	DEV	TEST	TEST	TEST
Thai							
1	4378	500	65.5	12.14	15.10	8.88	14.33
2	3497	500	65.5	10.97_9.6%	$13.15_{-12.9\%}$	$6.99_{-21.3\%}$	11.93_16.79
3	7219	2000	68.6	10.50-4.3%	12.46-5.2%	$4.61_{-34.0\%}$	10.94_8.3%
4	10262	2000	151.9	$10.45_{-0.5\%}$	12.46-0.0%	$4.15_{-10.0\%}$	10.54_3.7%
Indonesian							
1	5765	2000	68.6	16.68	15.99	19.82	16.29
2	4534	2000	68.6	$15.60_{-6.5\%}$	15.23-4.8%	15.83-20.1%	14.30-12.29
3	5714	2000	151.9	14.58-6.5%	14.92-2.0%	13.83-12.6%	13.77_3.7%
Vietnames	е						
1	2351	2000	68.6	16.08	16.95	24.63	17.86
2	1764	2000	68.6	$15.08_{-6.2\%}$	14.72_13.2%	18.81 _{-23.6%}	13.50 _ 24.49
3	6039	2000	151.9	14.09-6.6%	12.83-12.8%		11.59-14.19

Comparison to Existing ASR Systems (1/3)

Thai outperforms all baselines

- Outperform commercial services from Azure and Google.
- Outperform Whisper large-v3 by WER relative reductions of 39.04%, 31.06%, and 8.74% (Thai, Row 7 vs. Row 1).
- Nearly 10% parameters compared to Whisper large-v3 (151.9 M vs. 1542 M).

Model	#Params		CER / WER	
Model	(M)	GigaSpeech :	2 Common Voice	FLEURS
Thai				
Whisper large-v3	1542	20.44	6.02	11.55
Whisper large-v2	1541	22.47	8.79	15.50
Whisper base	72	46.47	32.59	42.28
MMS L1107	964	31.75	14.49	23.07
Azure Speech CLI 1.37.0 [†]	-	17.25	10.20	13.35
Google USM Chirp v2 [†]	-	49.70	14.75	63.35
GigaSpeech 2 (proposed)	151.9	12.46	4.15	10.54
Indonesian				
Whisper large-v3	1542	20.03	7.43	7.85
Whisper large-v2	1541	21.44	8.93	8.95
Whisper base	72	39.37	34.70	33.76
MMS L1107	964	35.27	20.72	24.49
Azure Speech CLI 1.37.0 [†]	-	18.07	10.33	11.18
Google USM Chirp v2†	-	19.63	9.70	7.23
GigaSpeech 2 (proposed)	151.9	14.92	13.83	13.77
+ Common Voice + FLEURS	151.9	14.95	7.33	12.74
Vietnamese				
Whisper large-v3	1542	17.94	13.74	8.59
Whisper large-v2	1541	18.74	18.00	10.26
Whisper base	72	39.88	44.07	40.41
MMS L1107	964	46.62	43.88	55.35
Azure Speech CLI 1.37.0 [†]	-	11.86	10.21	11.88
Google USM Chirp v2 [†]	-	13.28	12.46	11.75
GigaSpeech 2 (proposed)	151.9	12.83	14.43	11.59
+ Common Voice + FLEURS	151.9	12.39	11.47	9.94

Comparison to Existing ASR Systems (2/3)

Indonesian and Vietnamese achieve competitive performance

- Indonesian outperforms all baseline models on the GigaSpeech 2 test set.
- Indonesian outperforms Whisper large-v3 by WER relative reduction of 25.51% (Indonesian, Row 7 vs. Row 1, GigaSpeech 2 TEST).
- Vietnamese outperforms Whisper large-v3 by WER relative reduction of 28.48% (Vietnamese, Row 7 vs. Row 1, GigaSpeech 2 TEST).
- Nearly 10% parameters compared to Whisper large-v3 (151.9 M vs. 1542 M).

Model	#Params	CER / WER			
Model	" (M)	GigaSpeech	2 Common Voice	FLEUR!	
Thai					
Whisper large-v3	1542	20.44	6.02	11.55	
Whisper large-v2	1541	22.47	8.79	15.50	
Whisper base	72	46.47	32.59	42.28	
MMS L1107	964	31.75	14.49	23.07	
Azure Speech CLI 1.37.0 [†]	-	17.25	10.20	13.35	
Google USM Chirp v2 [†]	-	49.70	14.75	63.35	
GigaSpeech 2 (proposed)	151.9	12.46	4.15	10.54	
Indonesian					
Whisper large-v3	1542	20.03	7.43	7.85	
Whisper large-v2	1541	21.44	8.93	8.95	
Whisper base	72	39.37	34.70	33.76	
MMS L1107	964	35.27	20.72	24.49	
Azure Speech CLI 1.37.0 [†]	-	18.07	10.33	11.18	
Google USM Chirp v2 [†]	-	19.63	9.70	7.23	
GigaSpeech 2 (proposed)	151.9	14.92	13.83	13.77	
+ Common Voice + FLEURS	151.9	14.95	7.33	12.74	
/ietnamese					
Whisper large-v3	1542	17.94	13.74	8.59	
Whisper large-v2	1541	18.74	18.00	10.26	
Whisper base	72	39.88	44.07	40.41	
MMS L1107	964	46.62	43.88	55.35	
Azure Speech CLI 1.37.0 [†]	-	11.86	10.21	11.88	
Google USM Chirp v2 [†]	-	13.28	12.46	11.75	
GigaSpeech 2 (proposed)	151.9	12.83	14.43	11.59	
+ Common Voice + FLEURS	151.9	12.39	11.47	9.94	

Comparison to Existing ASR Systems (3/3)

Indonesian and Vietnamese demonstrates degraded performance compared to commercial ASR systems on the Common Voice and FLEURS test sets

- Be attributed to domain mismatch.
- Performance leap after adding Common Voice and FLEURS training data into GigaSpeech 2 (Indonesian & Vietnamese, Row 7 vs. Row 8).

Model	#Params		CER / WER	
Model	(M)	GigaSpeech	2 Common Voice	FLEURS
Thai				
Whisper large-v3	1542	20.44	6.02	11.55
Whisper large-v2	1541	22.47	8.79	15.50
Whisper base	72	46.47	32.59	42.28
MMS L1107	964	31.75	14.49	23.07
Azure Speech CLI 1.37.0 [†]	-	17.25	10.20	13.35
Google USM Chirp v2 [†]	-	49.70	14.75	63.35
GigaSpeech 2 (proposed)	151.9	12.46	4.15	10.54
Indonesian				
Whisper large-v3	1542	20.03	7.43	7.85
Whisper large-v2	1541	21.44	8.93	8.95
Whisper base	72	39.37	34.70	33.76
MMS L1107	964	35.27	20.72	24.49
Azure Speech CLI 1.37.0 [†]	-	18.07	10.33	11.18
Google USM Chirp v2 [†]	-	19.63	9.70	7.23
GigaSpeech 2 (proposed)	151.9	14.92	13.83	13.77
+ Common Voice + FLEURS	151.9	14.95	7.33	12.74
Vietnamese				
Whisper large-v3	1542	17.94	13.74	8.59
Whisper large-v2	1541	18.74	18.00	10.26
Whisper base	72	39.88	44.07	40.41
MMS L1107	964	46.62	43.88	55.35
Azure Speech CLI 1.37.0 [†]	-	11.86	10.21	11.88
Google USM Chirp v2 [†]	-	13.28	12.46	11.75
GigaSpeech 2 (proposed)	151.9	12.83	14.43	11.59
+ Common Voice + FLEURS	151.9	12.39	11.47	9.94

Comparison to the YODAS Corpus

GigaSpeech 2 refined yield significantly better results YODAS in the GigaSpeech 2 test set for all three languages

- For Thai and Vietnamese, GigaSpeech 2 refined consistently outperform YODAS manual across all evaluation sets.
- YODAS manual overfits due to simplistic filtering rules, leading to inconsistent performance in Indonesian.

Adding YODAS automatic tends to degrade performance

 Due to inherent noise and errors in the automatic subtitles.

Training Set	#Params	CER / WER			
Training Set	(M)	GigaSpeech 2	Common Voice	FLEURS	
Thai					
YODAS manual	68.6	27.34	10.71	14.19	
YODAS manual	151.9	28.76	10.96	16.11	
GigaSpeech 2 refined	151.9	12.46	4.15	10.54	
Indonesian					
YODAS manual	68.6	25.77	10.82	14.63	
YODAS manual + automatic	68.8	41.11	15.41	47.26	
YODAS manual	151.9	25.11	11.05	12.67	
GigaSpeech 2 refined	151.9	14.92	13.83	13.77	
Vietnamese					
YODAS manual	68.6	40.35	31.07	25.68	
YODAS manual + automatic	68.6	71.91	25.73	61.38	
YODAS manual	151.9	40.71	32.58	29.32	
GigaSpeech 2 refined	151 9	12.83	14 43	11 59	

Training ASR Models within ESPNet and Icefall on GigaSpeech 2

Toolkit	Model	#Params	(CER / WEI	R
	wodei	(M)	th	id	vi
Icefall	Zipformer/Stateless Pruned RNN-T	151.9	12.46	14.92	12.83
ESPnet	Conformer/Transformer CTC/AED	111.8	13.70	15.50	14.60

Icefall

Zipformer Pruned RNN-T

- Zipformer-Large encoder
- Stateless decoder
- Pruned RNN-T loss
- 2000-class BPE

ESPnet

Conformer CTC/AED

- Conformer-L encoder
- Transformer decoder
- CTC & AED loss
- 2000-class BPE

Resource link

Github Repository for Automated Pipeline

https://github.com/SpeechColab/GigaSpeech2

Download GigaSpeech 2 on Hugging Face

https://huggingface.co/datasets/speechcolab/gigaspeech2

Preprint Paper Link

https://arxiv.org/pdf/2406.11546

Thank You

If you have any questions, feel free to contact me.

Email: yifanyeung@sjtu.edu.cn

